Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 97: 102878, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863441

RESUMO

This study investigated the effects of increasing the intensity and/or duration of aerobic training sessions on thermoregulatory responses in rats subjected to exercises in temperate and warm environments. Thirty-two adult male Wistar rats were divided into four groups: a control (CON) group and three groups that were subjected to an 8-week aerobic training, during which the physical overload was achieved by predominantly increasing the exercise intensity (INT), duration (DUR) or by increasing both in an alternate manner (ID). During the last week of training, the rats received an abdominal sensor implant to measure their core body temperature (TCORE) by telemetry. After the training protocol, the 32 rats were subjected to incremental speed-exercises in temperate (23 °C) and warm (32 °C) environments. The rats had their TCORE recorded while running on a treadmill, and the ratio between the increase in TCORE and distance traveled was calculated to estimate thermoregulatory efficiency. All training protocols increased the rats' thermoregulatory efficiency during the incremental-speed exercise at 23 °C; i.e., trained rats attained faster running speeds but unchanged TCORE at fatigue compared to CON rats. However, none of the load components of training sessions - intensity or duration - was more effective than the other in improving this efficiency. At 32 °C, the aerobic training protocols did not influence the exercise-induced thermoregulatory responses. Our data indicate that different progressions in aerobic training performed at temperate conditions improved thermoregulatory efficiency during incremental exercise in the same environment; this training-induced adaptation was not clearly observed when running in warmer conditions.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Ratos Wistar , Temperatura
2.
Pflugers Arch ; 472(12): 1757-1768, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33040159

RESUMO

This study aimed to evaluate the physical exercise-induced neuronal activation in brain nuclei controlling thermoregulatory responses in hypertensive and normotensive rats. Sixteen-week-old male normotensive Wistar rats (NWRs) and spontaneously hypertensive rats (SHRs) were implanted with an abdominal temperature sensor. After recovery, the animals were subjected to a constant-speed treadmill running (at 60% of the maximum aerobic speed) for 30 min at 25 °C. Core (Tcore) and tail-skin (Tskin) temperatures were measured every minute during exercise. Ninety minutes after the exercise, the rats were euthanized, and their brains were collected to determine the c-Fos protein expression in the following areas that modulate thermoregulatory responses: medial preoptic area (mPOA), paraventricular hypothalamic nucleus (PVN), and supraoptic nucleus (SON). During treadmill running, the SHR group exhibited a greater increase in Tcore and an augmented threshold for cutaneous heat loss relative to the NWR group. In addition, the SHRs showed reduced neuronal activation in the mPOA (< 49.7%) and PVN (< 44.2%), but not in the SON. The lower exercise-induced activation in the mPOA and PVN in hypertensive rats was strongly related to the delayed onset of cutaneous heat loss. We conclude that the enhanced exercise-induced hyperthermia in hypertensive rats can be partially explained by a delayed cutaneous heat loss, which is, in turn, associated with reduced activation of brain areas modulating thermoregulatory responses.


Assuntos
Regulação da Temperatura Corporal , Hipertensão/fisiopatologia , Hipotálamo/fisiopatologia , Corrida , Animais , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
3.
PLoS One ; 12(8): e0183763, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841706

RESUMO

This study investigated the effects of manipulating the load components of aerobic training sessions on the physical performance of rats. To achieve this purpose, adult male Wistar rats were divided into four groups: an untrained control (CON) group and training groups with a predominant overload in intensity (INT) or duration (DUR) or alternating and similar overloads in intensity and duration (ID). Prior to, during, and after 8 weeks of the control or training protocols, the performance of the rats (evaluated by their workload) was determined during fatiguing, incremental-speed treadmill running. Two additional incremental running tests were performed prior to and at the end of the protocols to measure the peak rate of oxygen consumption (VO2peak). As expected, the rats in the trained groups exhibited increased performance, whereas the untrained rats showed stable performance throughout the 8 weeks. Notably, the performance gain exhibited by the DUR rats reached a plateau after the 4th week. This plateau was not present in the INT or ID rats, which exhibited increased performance at the end of training protocol compared with the DUR rats. None of the training protocols changed the VO2peak values; however, these values were attained at faster speeds, which indicated increased running economy. In conclusion, our findings demonstrate that the training protocols improved the physical performance of rats, likely resulting from enhanced running economy. Furthermore, compared with overload in duration, overload in the intensity of training sessions was more effective at inducing performance improvements across the 8 weeks of the study.


Assuntos
Condicionamento Físico Animal , Animais , Consumo de Oxigênio , Ratos
4.
Temperature (Austin) ; 2(4): 457-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27227066

RESUMO

Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

5.
PLoS One ; 9(11): e111501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25365556

RESUMO

Different strategies for cooling the body prior to or during physical exercise have been shown to improve prolonged performance. Because of ethical and methodological issues, no studies conducted in humans have evaluated the changes in brain temperature promoted by cooling strategies. Therefore, our first aim sought to measure the hypothalamic temperature (Thyp) of rats subjected to treadmill running in a cold environment. Moreover, evidence suggests that Thyp and abdominal temperature (Tabd) are regulated by different physiological mechanisms. Thus, this study also investigated the dynamics of exercise-induced changes in Thyp and Tabd at two ambient temperatures: 25°C (temperate environment) and 12°C (cold). Adult male Wistar rats were used in these experiments. The rats were implanted with a guide cannula in the hypothalamus and a temperature sensor in the abdominal cavity. After recovery from this surgery, the rats were familiarized with running on a treadmill and were then subjected to the two experimental trials: constant-speed running (20 m/min) at 12°C and 25°C. Both Thyp and Tabd increased during exercise at 25°C. In contrast, Thyp and Tabd remained unchanged during fatiguing exercise at 12°C. The temperature differential (i.e., Thyp - Tabd) increased during the initial min of running at 25°C and thereafter decreased toward pre-exercise values. Interestingly, external cooling prevented this early increase in the temperature differential from the 2nd to the 8th min of running. In addition, the time until volitional fatigue was higher during the constant exercise at 12°C compared with 25°C. Together, our results indicate that Thyp and Tabd are regulated by different mechanisms in running rats and that external cooling affected the relationship between both temperature indexes observed during exercise without environmental thermal stress. Our data also suggest that attenuated hypothalamic hyperthermia may contribute to improved performance in cold environments.


Assuntos
Temperatura Corporal , Temperatura Baixa , Hipotálamo/fisiologia , Condicionamento Físico Animal , Animais , Regulação da Temperatura Corporal , Masculino , Ratos
6.
Neurosci Lett ; 537: 11-6, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23347842

RESUMO

The present study aimed to investigate the chronic effects of caudal artery sympathectomy on thermoregulatory adjustments induced by passive heating. Male Wistar rats were subjected to two surgical procedures: caudal artery denervation (CAD) or sham surgery (Sham-CAD) and intraperitoneal implantation of a temperature sensor. On the day of the experiments, the animals were exposed to an ambient temperature of 36°C for 60min or allowed to rest under thermoneutral conditions (26°C). During the experiments, the tail skin temperature (T(skin)) and the core body temperature (T(core)) were measured. Under thermoneutral conditions, although sympathetic denervation did not change the average values of T(core) and T(skin), CAD rats exhibited decreased T(skin) variability compared with Sham-CAD rats (0.020±0.005°C vs. 0.031±0.005°C; P=0.024). During heat exposure, no differences were observed in the T(core) between the groups. In contrast, although peak T(skin) values were not affected by chronic sympathectomy of the caudal artery, CAD animals showed a delayed increase in T(skin); the time until the stabilization of T(skin) was three-fold longer in CAD rats than in Sham-CAD rats (15.3±2.5min vs. 4.9±0.6min; P=0.001). In conclusion, chronic sympathectomy of the caudal artery delays cutaneous heat loss during passive heating and decreases T(skin) variability under thermoneutral conditions. Taken together, our results indicate that the sympathetic innervation of cutaneous vessels is essential for the precise regulation of tail heat loss.


Assuntos
Aorta/inervação , Regulação da Temperatura Corporal , Temperatura Alta , Fenômenos Fisiológicos da Pele , Animais , Masculino , Ratos , Ratos Wistar , Simpatectomia , Cauda/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...